COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Physics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	11 SEMESTER 1				
COURSE TITLE	Mechanics				
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	NG ACTIVITIESWEEKLYnponents of the course, e.g.TEACHINGcredits are awarded for theHOURS				
	5 7			7	
Add rows if necessary. The organisation of methods used are described in detail at (a	f teaching and the teaching I).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	General background				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/course/view.php?id=1386				
	http://ecourse.uoi.gr/course/view.php?id=145				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The purpose of the course is for the students to understand the meaning of several physical quantities related with the motion of mass points as well as rigid bodies. Such quantities are the displacement, the velocity, the acceleration, the inertial mass, the force, the work, the energy, the momentum, the torque and the angular momentum. In addition, the student will learn to apply the three Newton's laws, the laws of energy, momentum and angular momentum conservation, in order to solve problems and explain phenomena of the everyday life. More specifically, after the successful attendance of the course, the student will be able:

- to know and understand in depth, the basic concepts, principles and laws related with the kinetics of dimensionless particles, three-dimensional objects and fluids. To apply this knowledge in solving problems.

- To use basic elements of vectors, differentials and integrals, in order to study the position, the velocity and the acceleration of moving bodies.

- To explain and understand how the laws of energy and momentum conservation are related with the Newton's laws.

- To apply the laws of energy, momentum and angular momentum conservation in solving

problems of dynamics.	
- To apply the laws of Mechanics in fluids for	solving problems.
General Competences	
Taking into consideration the general competences that t	he degree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following	does the course aim?
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-makina	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others
,	
Search for analysis and synthesis of data	and information, with the use of the necessary
technology	,y

Working independently and team work.

Production of free, creative and inductive thinking.

(3) SYLLABUS

Models, measurements, vectors in Physics. Motion in one dimension. Motion in plane and space. The particle dynamics. The Newton's laws. Work and energy. The conservation of energy and momentum. Collisions. Kinematics and dynamics of rotation. The conservation of angular momentum. Equilibrium of rigid bodies. Oscillations. Gravitation. Fluids mechanics.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
Face-to-face, Distance learning, etc.				
USE OF INFORMATION AND	Use of the e-learning Moodle system, with uploaded			
COMMUNICATIONS TECHNOLOGY	notes, lectures in videos, exercises for practice and			
Use of ICT in teaching, laboratory education, communication with students	communication with students.			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39		
described in detail.	Tutorials	26		
fieldwork, study and analysis of bibliography,	Study of bibliography	85		
tutorials, placements, clinical practice, art	Non-directed study	20		
workshop, interactive teaching, educational	Exams	5		
visits, project, essay writing, artistic creativity, etc.				
The student's study hours for each learning	<u></u>			
activity are given as well as the hours of non- directed study according to the principles of				
the ECTS				
	Course total	175		
STUDENT PERFORMANCE	Homework for solving exercises and their evaluation in a			
EVALUATION	weekly base. The corrected homework is returned to			
Description of the evaluation procedure	students. Intermediate examination (35%). Final writing examination in the end of the semester (65%).			
Language of evaluation methods of				
evaluation, summative or conclusive, multiple				
choice questionnaires, short-answer questions,				
open-ended questions, problem solving,				

written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

(5) ATTACHED BIBLIOGRAPHY

"Πανεπιστημιακή Φυσική με Σύγχοονη Φυσική" Τόμος Α (2η Ελληνική Έκδοση) Μηχανική- Κύματα H.D. Young και R.A. Freedman Μετάφοαση από Ομάδα Πανεπιστημιακών Εκδόσεις Παπαζήση ΑΕΒΕ 2009 Αθήνα

Φυσική για Επιστήμονες και Μηχανικούς Μηχανική, Ταλαντώσεις και μηχανικά κύματα. Θερμοδυναμική. Σχετικότητα (8η αμερ. Έκδοση) Reymond R. Serway. John W.Jewett Εκδόσεις Κλειδάριθμος 2012 Αθήνα

• Φυσική για Επιστήμονες και Μηχανικούς Τόμος ΙΑ (Εκδ. 2η) Randall D. Knight (Μετάφραση: Κων/νος Κρίτσης- Ιωάννα Παρασκελίδη Ίων - ΜακεδονικέςΕκδόσεις 2010 Αθήνα

Φυσική για Επιστήμονες και Μηχανικούς, Τόμος Α, (Εκδ. 4η) Giancoli, μετ. Τζιόλα
 Εκδόσεις Τζιολα 2013 Θεσ/νικη